Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368 Jun-Zhi Liu, Li-Juan Meng and Jian-Wu Wang*

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China

Correspondence e-mail:
yugp2005@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.064$
$w R$ factor $=0.146$
Data-to-parameter ratio $=13.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

2-[(4,5-Dihydro-4-phenylthiazol-2-yl)methyl]-3H-imidazo[4,5-b]pyridine

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{~S}$, the dihedral angles formed by the phenyl and the 3 H -imidazo[4,5-b]pyridine ring systems with the thiazole ring are 9.14 (3) and 75.79 (6) ${ }^{\circ}$, respectively. There are some intra- and intermolecular hydrogen-bond interactions in the crystal structure, providing stabilization.

Comment

Recently, (3H-imidazo[4,5-b]pyridine)(4-phenylthiazol-2-yl)methane and its derivatives have been the focus of increasing attention due to their bioactivities, such as antitubercular (Bukowski, 2001), anticonvulsant (Tomczuk et al., 1991), anxiolytic (Tomczuk et al., 1991), and antiproliferative activity (Liszkiewicz et al., 2003). These compounds are also employed as ligands (Abbotto et al., 2002). In this paper, we report the crystal structure of the title compound, (I).

(I)

Bond lengths and angles of the 3 H -imidazo[4,5-b]pyridine and thiazole ring systems (Table 1) are in agreement with the values quoted in previous reports (Rodier et al., 1993; Rodriguez de Barbarín et al., 2003). The dihedral angles formed by the phenyl (C3-C8) and the $3 H$-imidazo[4,5-b]pyridine ($\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{N} 3 / \mathrm{C} 11-\mathrm{C} 16$) ring systems with the thiazole ($\mathrm{S} 1 / \mathrm{N} 4 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 9$) ring are 9.14 (3) and 75.79 (6) ${ }^{\circ}$, respectively. The crystal structure is stabilized by intra- and intermolecular hydrogen-bond interactions (Table 2 and Fig. 2).

Experimental

Ethyl 2-(4-phenylthiazol-2-yl)acetate (10 mmol) and 2,3-diaminopyridine (10 mmol) were mixed and reacted at $453-473 \mathrm{~K}$ under solvent-free conditions for 1 h . Purification was achieved by recrystallization from methanol (yield 90\%). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a methanol solution at room temperature for two weeks.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{~S} \\
& M_{r}=292.37 \\
& \text { Monoclinic, } P 2_{h} / c \\
& a=12.685(6) \AA \\
& b=5.277(2) \AA \\
& c=21.389(9) \AA \\
& \beta=100.579(6)^{\circ} \\
& V=1407.5(11) \AA^{3} \\
& Z=4
\end{aligned}
$$

Received 14 November 2005 Accepted 23 November 2005 Online 3 December 2005

Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.925, T_{\text {max }}=0.973$
6901 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.146$
$S=1.18$
2509 reflections
190 parameters
H -atom parameters constrained

2509 independent reflections 2210 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.030$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-15 \rightarrow 15$
$k=-5 \rightarrow 6$
$l=-23 \rightarrow 25$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0481 P)^{2} \\
&+0.6991 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.00 \\
& \Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

C1-C2	$1.349(4)$	C11-N2	$1.351(3)$
C1-S1	$1.700(4)$	C12-N3	$1.392(3)$
C9-N4	$1.298(3)$	C15-N1	$1.338(4)$
C9-S1	$1.725(3)$	C16-N1	$1.333(3)$
C11-N3	$1.307(3)$	C16-N2	$1.370(3)$
C11-C10-C9	$110.3(2)$	C1-S1-C9	$89.08(15)$
C9-N4-C2	$111.1(2)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.86	2.01	$2.863(3)$	170
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{~N} 4$	0.93	2.57	$2.884(4)$	100

Symmetry code: (i) $-x+1,-y+1,-z+1$.
All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-$ $0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom).

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

References

Abbotto, A., Bradamante, S., Facchetti, A. \& Pagani, G. A. (2002). J. Org. Chem. 67, 5753-5772.
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Bukowski, L. (2001). Pharmazie, 56, 23-7.

Figure 1
View of the title compound, with displacement ellipsoids drawn at the 40\% probability level.

Figure 2
A packing diagram of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines.

Liszkiewicz, H., Kowalska, M. W., Nawrocka, W., Wójcicka, A., Wietrzyk, J., Nasulewicz, A., Pełlczyńska, M. \& Opolski, A. (2003). Phosphorus Sulfur Silicon, 178, 2725-2733.
Rodier, N., Ceolin, R., Agafonov, V., Toscani, S., Dugue, J., Nicolai, E. \& Teulon, J. M. (1993). Acta Cryst. C49, 2034-2037.
Rodriguez de Barbarín, C., Bernes, S., Sanchez-Viesca, F. \& Berros, M. (2003). Acta Cryst. C59, o360-o362.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tomczuk, B. E., Taylor, C. R. Jr., Moses, L. M., Sutherland, D. B., Lo, Y. S., Johnson, D. N., Kinnier, W. B. \& Kilpatrick, B. F. (1991). J. Med. Chem. 34, 2993-3006.

